RISK ANALYSIS AND DECISION MAKING IN CONSTRUCTION CLAIMS

Arian Lessani, PMP
Outline

- Paper Objectives
- Statement of Research
- Literature Review
- Proposed Method
- Conclusion
Research Objectives

- Risk Analysis of Construction claims from economic standpoint
- Defining causation and reasoning of claims with Bayesian Networks
- Refining models of bargaining process for construction claims
- Considerations and elements in analysis of Pretrial Negotiations and equilibrium concept for settlement
Statement of Research

- Best actions or strategies?
- Most desirable outcomes?
- Information and beliefs of each party?
- Thresholds for accepting or rejecting settlement offers?
- Why do cases fail to settle?
- Current claims and settlements in the industry
- Influence of Jury system, Board of appeals, attorneys, etc.
Contract Dispute predictors

Construction of Multi-Attribute Dispute Hierarchy

Construction Industry Institute (CII) to calculate Dispute Potential Index (Likelihood of contract dispute)

Main Characteristics

- **People**
 - organizations, relationships, roles, responsibilities, and expectations

- **Project**
 - technical nature of the work, type and complexity of a project, limitations of the environment

- **Process**
 - Planning, financial and scope definition, contractual obligations, risk allocation, administrative procedures

BNN model for main criteria leading to disputes
CII Contract Dispute predictors – BN Model

Remodeling interrelationship of claim causes in BN format

CII Branch of Hierarchy

Logistic Regression Model (Discrete Choice Modeling)

Linear Weighting Model

Sample Questionnaire
Game Theoretic Parameters for non-cooperative games

- **Players**
- **Actions & Strategies**
- **Outcomes & Payoffs**
- **Timing**
- **Information**
- **Prediction (Estimates)**

- **Timing for Actions**
 - Simultaneously -
 Mostly used in axiomatic and Symmetric Information Models
 - Sequentially
 Only if actions can be observed and can influence other player’s decision

- Timing also can be considered as factor of duration for negotiation
Game Theoretic Parameters

Information

- **Perfect Information**
 - Players know the exact Verdict if case goes to trial

- **Imperfect Information** - Players are not sure about Verdicts
 - **Symmetric** – (Shared Knowledge)
 - **Asymmetric** – (Private Knowledge)
 - **One-sided Asymmetric** – One party hold private info about the case
 - **Two-sided Asymmetric** – both parties hold private info about the case
Game Theoretic Parameters
Prediction (Estimates)

- **Cooperative Games**
 - Efficient (No money left on the table or wasted like zero-sum game)
 - Equilibrium
 - Nash Bargaining Solution
 - KS Solution

- **Non-cooperative**
 - Nash Equilibrium
 - No player can unilaterally improve his payoff by changing strategy
 - Bayesian-Nash
 - Conditional probability on expected payoffs
Decision Tree for Players’ Settlement

Plaintiff
- Claim
- Ignore
- Not

Defendant
- Claim
- Ignore
- Not

- Offer
 - Accept
 - Court
 - Drop
 - Ask
 - Accept
 - Court
Dual Agent Decision Tree for Players

\(\delta \): Contractor’s Damages
\(K_i \): Litigation Costs
\(S_C \): Contractor’s settlement Asking
\(S_O \): Owner’s settlement offer
\(V \): Court’s Verdict

<table>
<thead>
<tr>
<th></th>
<th>Contractor</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer Settlement</td>
<td>(S+O)</td>
<td>-</td>
</tr>
<tr>
<td>No Offer</td>
<td>-(\delta)</td>
<td>0</td>
</tr>
<tr>
<td>No Action</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Request Settlement</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Accept</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Court</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

\(S+O \): Sum of contractor’s settlement and offer
\(\delta \): Contractor’s Damages
\(0 \): No payment or action
Conclusions

- Claim causes can define probability of being held liable by using Bayesian Networks.
- Parties acquire private information about claim cases or they may perceive the same information differently.
- The belief gap on the amount of damages between claim parties is the base of disputes.
- The interaction between parties and measuring the belief gap can be calculated using non-cooperative games for pretrial negotiations (Bayesian Games).
- It is concluded that using Bayesian Network in game theoretic models helps to update parties’ belief based on multiple parameters.
Questions and Suggestions