University of Maryland Project Management Symposium

Turbocharging Your Estimation Process Using Data You (Probably) Already Have

Nana Kwame

Writer & speaker on PMOs Senior Manager, Enterprise PMO

Symposium

Turbocharging Your Estimation Process Using Data You (Probably) Already Have

Nana Kwame

About DC Water

McMillan Water Treatment Plant (photo credit: DC Water)

Blue Plains Advanced Wastewater Treatment Plant (photo credit: DC Water)

DC Water Headquarters (photo credit: SK&A Engineers)

Some Awards....

What is an Estimate?

"a <u>quantitative</u> assessment of the <u>likely</u> amount or outcome of a variable"

- PMBOK Guide 7th edition

Some key terms....

	Range A list of possible outcomes within a set lower & upper limit	01
	Accuracy The correctness of an estimate	02
©	Precision The degree of exactness ascribed to the estimate	03
V C	Confidence The level of certainty (%) that the estimate will fall within a given range	04
o o	Deterministic vs Probabilistic Point (or point in time) estimate vs range of estimates (with associated probabilities)	05

Common Estimation Method

^{*} Top-down estimation method

^{**} Bottom-up estimation method

^{***} Top-down or bottom-up estimation method

Data Collection: Building your Estimates Database

Automated (Weekly)

Waunal Inbrite

Project Management CENTER FOR EXCELLENCE

Civil & Environmental Engineering Department

Timesheet

Hours

Costs

Durations

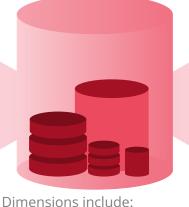
Story Points

FTE

Estimates

Effort Hours

Costs


Durations

Story Points

ESTIMATES DATA WAREHOUSE

Resource

- Portfolio
- Assignment **Project Size** Sprint
- Complexity Release
- Epic

Task

- Phase
- Project Methodology **Estimation Method**
- Project/Program

Reporting

Data Analytics

Predictive Modeling

Error Reduction

Estimates Generation: Parametric Models

- Compares each variable against Y to determine the best fit
- Historical data must be collected
- Model must be scalable
- Use excel's data analysis add-in, BI tools or build into your PMO tool!

Parametric Models - Process

01Step

Collect historical data

02Step

Identify and code appropriate variables

03

Step

Plot variables looking for relationship

04

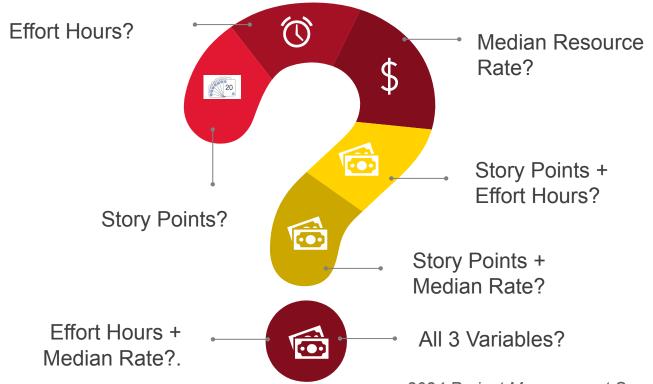
Step

Apply least squares method to identify best fit line

05

Step

Use resulting equation to predict new observation



Parametric Models - Example

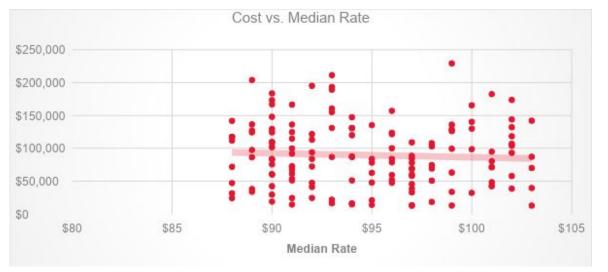
What independent variable that best predicts individual sprint costs on an agile project?

Is story points the "best fit" variable PROJECT MANAGEMENT CENTER FOR EXCELLENCE ACID LE MENTON DE LA CENTE PROPRIENT DE LA

Regression Statistics						
Multiple R	0.928153612					
R Square	0.861469127					
Adjusted R Square	0.860486638					
Standard Error	18415.5081					
Observations	143					

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	<i>Upper 95.0%</i>
Intercept	170.3697701	3405.237144	0.050032	0.960168	-6561.550767	6902.290307	-6561.550767	6902.290307
Story Points	1991.696973	67.26159075	29.61121	2.18E-62	1858.725417	2124.66853	1858.725417	2124.66853

...maybe effort hours is the "best fit"


Regression Statistics					
Multiple R	0.986691192				
R Square	<mark>0.973559508</mark>				
Adjusted R Square	0.973371986				
Standard Error	8045.354577				
Observations	143				

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	394.7730812	1415.175161	0.278957	0.780687	-2402.931257	3192.47742	-2402.931257	3192.47742
Effort Hours	94.64305085	1.313507913	72.05366	4E-113	92.0463357	97.239766	92.0463357	97.239766

•

...perhaps median rate is the "best fit"?

Regression Statistics					
Multiple R	0.055019181				
R Square	0.00302711				
Adjusted R Square Standard Error	-0.004043619 49402.8603				
Observations	143				

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	147345.0176	87582.12938	1.682363955	0.094711542	-25798.85186	320488.887	-25798.85186	320488.887
Median Rate	-604.2361611	923.4740748	-0.65430766	0.513979431	-2429.881138	1221.408816	-2429.881138	1221.408816

.

... will effort hours + story points do the tricker Project M. CENTER FOR

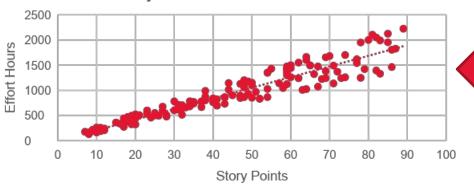
7	PROJECT MANAGEMENT CENTER FOR EXCELLENCE
, 7 2=	A.J. CLARK SCHOOL OF ENGINEERING Civil & Environmental Engineering Department

Regression Statistics				
Multiple R	0.986926911			
R Square	<mark>0.974024728</mark>			
Adjusted R Square	0.973653653			
Standard Error	8002.690308			
Observations	143			

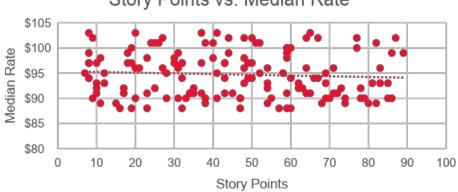
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1119.939367	1480.290693	0.756567188	0.45058	-1806.674854	4046.553589	-1806.674854	4046.553589
Story Points	-144.9539788	91.54124662	-1.583482683	0.115568	-325.9359409	36.02798336	-325.9359409	36.02798336
Effort Hours	100.7832641	4.091861243	24.63017637	9.63E-53	92.69343459	108.8730936	92.69343459	108.8730936

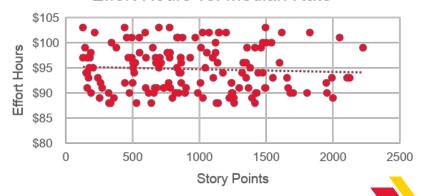
.... what about adding all 3 variables?

Regression Statistics	
Multiple R	0.986930044
R Square	0.974030911
Adjusted R Square	0.973470427
Standard Error	8030.469419
Observations	143


	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1493.244092	14440.95581	-0.103403411	0.917791844	-30045.58023	27059.09205	-30045.58023	27059.09205
Story Points	-144.0676245	91.98812561	-1.566154583	0.119586212	-325.9444974	37.8092484	-325.9444974	37.8092484
Effort Hours	100.759938	4.108066487	24.52733868	2.38746E-52	92.63756049	108.8823156	92.63756049	108.8823156
Median Rate	27.39527198	150.588517	0.181921388	0.855909452	-270.3449894	325.1355334	-270.3449894	325.1355334

Checking for collinearity....





Collinearity problem!

Story Points vs. Median Rate

Effort Hours vs. Median Rate

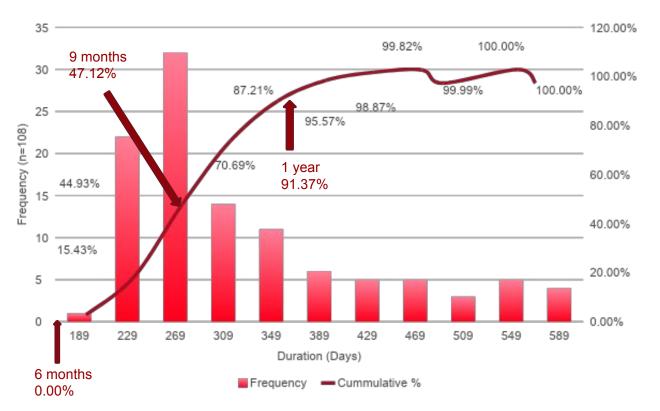
And the winner is....

ANSWER: Effort Hours, represented by:

$$y = 94.059x + 394.77$$

(i.e. 1 hour of effort is worth 94.059 + 394.77 = \$488.83 @95% confidence level)

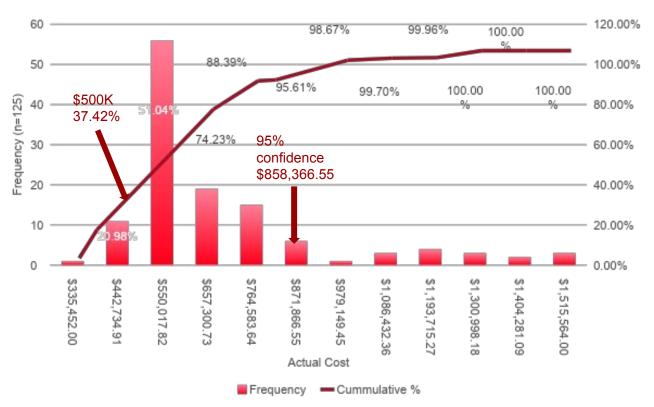
Estimates Generation: Beta Distribution



- Our cost and duration data has "best fit" into a beta
- Historical data must be collected
- ☐ Use excel's beta dist. function or build into your PMO tool!

X

Beta Distribution– Duration Prediction Example



Sample data from 108 App Dev projects Mean = 308.42 days Standard deviation = 102.63 Median = 267 days

Beta Distribution Cost Prediction Example

Sample data from 125 COTS projects Mean = \$633,762.57Standard deviation = 259,427.28 Median =\$540,431.00

Estimates Optimization: Tracking Estimate Error

Estimate error involves tracking This is a much wider topic that is the difference between actuals STOP beyond the scope of this presentation and estimates

Let's continue the conversation!

Civil & Environmental Envincering Department

Nana Kwame

Building metrics-based PMOs 2020 PMI PMO of the Year A...

Evaluate Session

